Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Sports Phys Ther ; 18(5): 1123-1135, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795328

RESUMO

Background: Breakdancing or breaking will enter the Olympics in 2024, however, there is a paucity of literature exploring the epidemiology, demands, and performance. Purpose: The purpose of this study was to describe injury and training profiles, along with the results of a short performance test battery, in a group of elite breakers. Study Design: Cross-sectional study (retrospective). Methods: Fourteen breakdancers (breakers) (4 Bgirls, 10 Bboys) participated in an interview regarding their injury and training history, endurance test (cycle VO2max testing), counter movement jump, squat jump, drop jump, isometric hip abduction, adduction, shoulder external and internal rotation strength testing on a fixed-frame dynamometer. Breakers were divided into elite (n=10) and developing (n=4) based on their qualification for a world finals competition; Wilcoxen rank sums were used to compare the two groups, or in the case of strength testing between those with and without an injury history. Results: The breakers had a median 11.0 [10.0 - 14.0] years breaking experience and trained 24.4 [20.5 - 30.0] hours per week. The knee was the most commonly injured body part and most frequently injured joint, with the thigh being the most common site for muscle injuries. There were no differences in endurance testing or jump height testing results between elite and developing breakers. There was no difference in shoulder external or internal rotation strength between athletes with a history of shoulder injury and those without. Similarly, there was no difference in hip abduction or adduction strength in those with a history of hip injury and those without. Conclusion: The results of this study should be viewed with caution due to the small sample size. However, this study is the first to publish functional and physiological descriptives on breakers. The authors hope these results support clinicians treating breakers as well as encourages future research related to breaking. Level of Evidence: 2b.

2.
Front Sports Act Living ; 4: 971137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36299402

RESUMO

Alpine skiing is an attractive winter sport that often includes mental and physical demands. Since skiing is often done for several hours, fatigue processes occur that might lead to action errors associated with a higher risk of accidents and injuries. The aim of this study was to investigate the timing of changes in subjective, physiological, and biomechanical parameters during a physically demanding, standardized, non-competitive alpine skiing session. A group of 22 experienced male skiers carried out 10 runs, each lasting between 150 and 180 s, at a turn rate of 80 turns per minute with their best skiing technique. Immediately after the run, skiers reported ratings of fatigue, and other affective states. During skiing, breathing pattern and biomechanical data of the ski turns as radial force, turn duration, edge angle symmetry, and a composed motion quality score were recorded. Analyses of variances on skiers showing signs of fatigue (n =16) revealed that only the subjective data changed significantly over time: fatigue and worry increased, vitality and calm decreased. Subsequently, individual change points analyses were computed to localize abrupt distribution or statistical changes in time series data. For some skiers, abrupt changes at certain runs in physiological and/or biomechanical parameters were observed in addition to subjective data. The results show general effects in subjective data, and individual fatigue-related patterns concerning the onset of changes in subjective, physiological, and biomechanical parameters. Individuality of response to fatigue should be considered when studying indicators of fatigue data. Based on the general effects in subjective data, it is concluded that focusing on self-regulation and self-awareness may play a key role, as subjective variables have been shown generally sensitive to the physical stress in alpine skiing. In the future, customized algorithms that indicate the onset of fatigue could be developed to improve alpine skiers' self-awareness and self-regulation, potentially leading to fewer action errors.

3.
Eur J Sport Sci ; 22(10): 1484-1492, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34429026

RESUMO

Recent studies have developed wearable sensor systems to detect, classify and evaluate performance during alpine skiing. In order to enrich skiing data to provide motion quality feedback, edge angle (EA) and radial force (Fr) are parameters of interest. However, the estimation of these parameters via calibration-free wearable technologies has not been validated. The purpose of this study was to develop and validate a wearable method to estimate EA and Fr. Participants completed simulated skiing trials on an indoor skiing carpet. Two IMU's mounted to the ski boots estimated EA and Fr and compared to reference values measured with a 3D motion capture system. The performance of the wearable system was quantified by accuracy and precision. The overall accuracy and precision of the wearable system was 97.6 ± 12.4% and 15.5 ± 17.6% for EA, and 105.5 ± 5.7% and 29.8 ± 10.0%, respectively for Fr. The developed wearable system was accurate for the estimation of EA and Fr, but was highly variable with low precision for both metrics. Further research is needed to improve the precision of field-relevant skiing metrics during in-field studies using simple measurement setups that can easily be implemented by recreational and expert skiers alike.Highlights IMU's mounted on the boots are sufficient tools for accurate estimation of edge angle and radial force during both long and short style turns on a skiing simulator.As the estimation of edge angle and radial force are dependent on other estimated parameters (i.e. turn switch), the precision of these metrics is relatively low.The results of the current study apply only to simulated alpine skiing on a treadmill, and further work is required to prove the accuracy and precision of this system on snow.


Assuntos
Esqui , Fenômenos Biomecânicos , Calibragem , Humanos , Fenômenos Mecânicos , Movimento (Física) , Neve
4.
Front Physiol ; 12: 646042, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512370

RESUMO

Objective: To investigate (i) typical protocols used in research on biomechanical response to running-induced fatigue, (ii) the effect of sport-induced acute fatigue on the biomechanics of running and functional tests, and (iii) the consistency of analyzed parameter trends across different protocols. Methods: Scopus, Web of Science, Pubmed, and IEEE databases were searched using terms identified with the Population, Interest and Context (PiCo) framework. Studies were screened following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and appraised using the methodological index for non-randomized studies MINORS scale. Only experimental studies with at least 10 participants, which evaluated fatigue during and immediately after the fatiguing run were included. Each study was summarized to record information about the protocol and parameter trends. Summary trends were computed for each parameter based on the results found in individual studies. Results: Of the 68 included studies, most were based on in-lab (77.9%) protocols, endpoint measurements (75%), stationary measurement systems (76.5%), and treadmill environment (54.4%) for running. From the 42 parameters identified in response to acute fatigue, flight time, contact time, knee flexion angle at initial contact, trunk flexion angle, peak tibial acceleration, CoP velocity during balance test showed an increasing behavior and cadence, vertical stiffness, knee extension force during MVC, maximum vertical ground reaction forces, and CMJ height showed a decreasing trend across different fatigue protocols. Conclusion: This review presents evidence that running-induced acute fatigue influences almost all the included biomechanical parameters, with crucial influence from the exercise intensity and the testing environment. Results indicate an important gap in literature caused by the lack of field studies with continuous measurement during outdoor running activities. To address this gap, we propose recommendations for the use of wearable inertial sensors.

5.
Sensors (Basel) ; 21(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072526

RESUMO

Recent developments in sensing technology have made wearable computing smaller and cheaper. While many wearable technologies aim to quantify motion, there are few which aim to qualify motion. (2) To develop a wearable system to quantify motion quality during alpine skiing, IMUs were affixed to the ski boots of nineteen expert alpine skiers while they completed a set protocol of skiing styles, included carving and drifting in long, medium, and short radii. The IMU data were processed according to the previously published skiing activity recognition chain algorithms for turn segmentation, enrichment, and turn style classification Principal component models were learned on the time series variables edge angle, symmetry, radial force, and speed to identify the sources of variability in a subset of reference skiers. The remaining data were scored by comparing the PC score distributions of variables to the reference dataset. (3) The algorithm was able to differentiate between an expert and beginner skier, but not between an expert and a ski instructor, or a ski instructor and a beginner. (4) The scoring algorithm is a novel concept to quantify motion quality but is limited by the accuracy and relevance of the input data.


Assuntos
Esqui , Dispositivos Eletrônicos Vestíveis , Algoritmos , Movimento (Física)
6.
Sensors (Basel) ; 21(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917619

RESUMO

The instant of turn switch (TS) in alpine skiing has been assessed with a variety of sensors and TS concepts. Despite many published methodologies, it is unclear which is best or how comparable they are. This study aimed to facilitate the process of choosing a TS method by evaluating the accuracy and precision of the methodologies previously used in literature and to assess the influence of the sensor type. Optoelectronic motion capture, inertial measurement units, pressure insoles, portable force plates, and electromyography signals were recorded during indoor treadmill skiing. All TS methodologies were replicated as stated in their respective publications. The method proposed by Supej assessed with optoelectronic motion capture was used as a comparison reference. TS time differences between the reference and each methodology were used to assess accuracy and precision. All the methods analyzed showed an accuracy within 0.25 s, and ten of them within 0.05 s. The precision ranged from ~0.10 s to ~0.60 s. The TS methodologies with the best performance (accuracy and precision) were Klous Video, Spörri PI (pressure insoles), Martinez CTD (connected boot), and Yamagiwa IMU (inertial measurement unit). In the future, the specific TS methodology should be chosen with respect to sensor selection, performance, and intended purpose.


Assuntos
Esqui , Fenômenos Biomecânicos , Humanos , Métodos , Movimento (Física)
7.
Artigo em Inglês | MEDLINE | ID: mdl-33344997

RESUMO

Several methods to determine turn switch points during alpine skiing using the vertical GRF exist in the literature. Although comparative studies between pressure insoles (PI) and force platforms (FP) have been conducted, there are no reports comparing the detected time points. Yet, these sensors and methods have been used interchangeably. This study aims to compare the turn switch time points with both sensors and various methods. Twenty skiers performed turns with FP and PI for two different ski styles (high and low dynamic turns). Three different assessment methodologies were compared: minima, functional minima, and crossings. Bland Altman and repeated measures ANOVA were used to assess statistical differences. Main effects of sensor and method were observed (p < 0.001). Although there was a low effect size ( η p 2 = 0.013) between FP and PI, the 95% CI yielded values representing >30% of the turn duration. A large effect size (η2 = 0.153) was found between the crossing method and the minima and functional minima methods. This indicates that those methods assess different events during the turn switch phase. In conclusion, the sensors and assessment methodologies compared in this study are not interchangeable with the possible exception of the minima and functional minima assessed with FP.

8.
Sensors (Basel) ; 20(15)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751374

RESUMO

In alpine skiing, four commonly used turning styles are snowplow, snowplow-steering, drifting and carving. They differ significantly in speed, directional control and difficulty to execute. While they are visually distinguishable, data-driven classification is underexplored. The aim of this work is to classify alpine skiing styles based on a global navigation satellite system (GNSS) and inertial measurement units (IMU). Data of 2000 turns of 20 advanced or expert skiers were collected with two IMU sensors on the upper cuff of each ski boot and a mobile phone with GNSS. After feature extraction and feature selection, turn style classification was applied separately for parallel (drifted or carved) and non-parallel (snowplow or snowplow-steering) turns. The most important features for style classification were identified via recursive feature elimination. Three different classification methods were then tested and compared: Decision trees, random forests and gradient boosted decision trees. Classification accuracies were lowest for the decision tree and similar for the random forests and gradient boosted classification trees, which both achieved accuracies of more than 93% in the parallel classification task and 88% in the non-parallel case. While the accuracy might be improved by considering slope and weather conditions, these first results suggest that IMU data can classify alpine skiing styles reasonably well.


Assuntos
Movimento , Esqui/classificação , Fenômenos Biomecânicos , Telefone Celular , Árvores de Decisões , Sistemas de Informação Geográfica , Humanos , Esqui/fisiologia
9.
Sensors (Basel) ; 19(4)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795560

RESUMO

In order to gain insight into skiing performance, it is necessary to determine the point where each turn begins. Recent developments in sensor technology have made it possible to develop simpler automatic turn detection methodologies, however they are not feasible for regular use. The aim of this study was to develop a sensor set up and an algorithm to precisely detect turns during alpine ski, which is feasible for a daily use. An IMU was attached to the posterior upper cuff of each ski boot. Turn movements were reproduced on a ski-ergometer at different turn durations and slopes. Algorithms were developed to analyze vertical, medio-lateral, anterior-posterior axes, and resultant accelerometer and gyroscope signals. Raw signals, and signals filtered with 3, 6, 9, and 12 Hz cut-offs were used to identify turn switch points. Video recordings were assessed to establish a reference turn-switch and precision (mean bias = 5.2, LoA = 51.4 ms). Precision was adjusted based on reference and the best signals were selected. The z-axis and resultant gyroscope signals, filtered at 3Hz are the most precise signals (0.056 and 0.063 s, respectively) to automatically detect turn switches during alpine skiing using this simple system.


Assuntos
Fenômenos Biomecânicos/fisiologia , Técnicas Biossensoriais/métodos , Movimento/fisiologia , Esqui , Algoritmos , Humanos , Gravação em Vídeo
10.
Med Sci Sports Exerc ; 51(4): 760-772, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30418963

RESUMO

INTRODUCTION: This study aimed to 1) determine basic physiological demands during a simulated on-snow cross-country skiing (XCS) race when using grip-waxed skis (all classic XCS techniques [CLASSIC]), versus glide-waxed skis for exclusive double poling (DP) and 2) analyze in which track sections DP is different from CLASSIC under controlled gliding conditions in elite junior and senior skiers. METHODS: Nineteen male and female elite XC skiers performed 1) two randomized simulated XCS races over 5.3 km using DP or CLASSIC measuring section times, V˙O2, HR, blood lactate, and RPE; and 2) V˙O2peak tests using diagonal stride and DP on treadmill. RESULTS: The total group showed no differences in performance or physiological responses between DP and CLASSIC. Elite male skiers achieved improved (~23 s, P < 0.05), male juniors equal (P > 0.05) and females worse (~43 s, P < 0.05) performance with DP versus CLASSIC. Flat and undulating terrain favored DP in men, whereas uphill favored CLASSIC in females (~60 s). Uphill sections showed the greatest group differences. Greater RPE was found in the arms during DP, whereas RPE was greater in the legs using CLASSIC. V˙O2peak in DP was ~95% of V˙O2max. CONCLUSIONS: Male skiers demonstrated superior performance with exclusively using DP on a Fédération International de Ski regulation-compliant XCS track, whereas junior males achieved similar, and females' weaker performance using DP versus CLASSIC. The greatest potential in females is in uphill sections where they distinctly lose time. Exclusive DP might only be beneficial in athletes with high upper-body capacity, and double-pole-specific training and technique. To generalize the findings of the current study, further analysis of snow conditions and course topography is required.


Assuntos
Desempenho Atlético/fisiologia , Destreza Motora/fisiologia , Esqui/fisiologia , Equipamentos Esportivos , Adolescente , Adulto , Braço/fisiologia , Fenômenos Biomecânicos , Comportamento Competitivo/fisiologia , Feminino , Humanos , Perna (Membro)/fisiologia , Masculino , Músculo Esquelético/fisiologia , Consumo de Oxigênio/fisiologia , Percepção/fisiologia , Esforço Físico/fisiologia , Adulto Jovem
11.
Artigo em Inglês | MEDLINE | ID: mdl-33344942

RESUMO

Several methodologies have been proposed to determine turn switches in alpine skiing. A recent study using inertial measurement units (IMU) was able to accurately detect turn switch points in controlled lab conditions. However, this method has yet to be validated during actual skiing in the field. The aim of this study was to further develop and validate this methodology to accurately detect turns in the field, where factors such as slope conditions, velocity, turn length, and turn style can influence the recorded data. A secondary aim was to identify runs. Different turn styles were performed (carving long, short, drifted, and snowplow turns) and the performance of the turn detection algorithm was assessed using the ratio, precision, and recall. Short carved turns showed values of 0.996 and 0.996, carving long 1.007 and 0.993, drifted 0.833 and 1.000 and snowplow 0.538 and 0.839 for ratio and precision, respectively. The results indicated that the improved system was valid and accurate for detecting runs and carved turns. However, for drifted turns, while all the turns detected were real, some real turns were missing. Further development needs to be done to include snowplow skiing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...